295 research outputs found

    “Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine ÎČ‑Synthase Inhibitor that Attenuates Cellular H\u3csub\u3e2\u3c/sub\u3eS Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model

    Get PDF
    The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine ÎČ-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a “zipped” approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C2-symmetric CBS product (L,L)-cystathionine. The “zipped” concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine−imine interchange. It is demonstrated that the most potent “zipped” inhibitor 6S reduces H2S production in SHSY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∌70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia. Supplementary information (112 pp.) is attached (below)

    “Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine ÎČ‑Synthase Inhibitor that Attenuates Cellular H\u3csub\u3e2\u3c/sub\u3eS Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model

    Get PDF
    The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine ÎČ-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a “zipped” approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C2-symmetric CBS product (L,L)-cystathionine. The “zipped” concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine−imine interchange. It is demonstrated that the most potent “zipped” inhibitor 6S reduces H2S production in SHSY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∌70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia. Supplementary information (112 pp.) is attached (below)

    A possible rheological model of gum candies

    Get PDF
    An appropriate rheological model can be used in production of good quality gum candy required by consumers. For this purpose Creep-Recovery Test (CRT) curves were recorded with a Stable Micro System TA.XT-2 precision texture analyser with 75 mm diameter cylinder probe on gum candies purchased from the local market. The deformation speed was 0.2 mm s−1, the creeping- and recovering time was 60 s, while the loading force was set to 1 N, 2 N, 5 N, 7 N, and 10 N. The two-element Kelvin-Voigt-model, a three-element model, and the four-element Burgers-model were fitted on the recorded creep data, and then the parameters of the models were evaluated. The best fitting from the used models was given by the Burgers model

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Value of personalized dementia-specific QOL scales; an explorative study in 3 European countries

    Get PDF
    Measuring Quality of Life (QOL) can be difficult due to its individual character. To explore the value of personalized QOL measurement for people with dementia, personalized versions of two dementia-specific QOL scales (Dementia quality of Life (DQoL) and Quaility of Life in Alzheimer's Disease (QoL-AD)) were constructed. This study investigated whether the personalized measures are more valid to detect variations in QOL than their standard versions for people with mild to moderate dementia, with sufficient internal consistency. Moreover, the relationship between the personalized QOL measures and severity of dementia was investigated. Finally, the study explored the differences between countries regarding the personalized overall QOL and differences in the importance of QOL domains. This explorative one-group design study used baseline data from the MEETINGDEM study into the implementation of the Meeting Centres Support Programme in Italy, Poland and the UK. The personalized versions of the DQoL and QoL-AD were reliable, but not more valid than their standard versions. No relationship between severity of dementia and personalized QOL was found. While no differences were found between countries for the overall QOL score, some QOL domains were valued differently: people with dementia from the UK rated self-esteem, mood, physical health, energy level and the ability to do chores around the house significantly less important than people from Italy and Poland. The personalized versions of the DQoL and QoL-AD may offer dementia care practice important insights into what domains contribute most to an individual’s QOL

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond
    • 

    corecore